

Alltest Instruments, Inc.

500 Central Ave.
Farmingdale, NJ 07727

P: (732) 919-3339
F: (732) 919-3332

alltest.net
sales@alltest.net

The test & measurement equipment you need at the price you want.

Alltest carries the world's largest selection of used/refurbished benchtop test & measurement equipment at 50% the price of new.

Our equipment is guaranteed working, warrantied, and available with certified calibration from our in-house staff of technicians and engineers.

- **10+ full time technicians with over 150 years of specialization**
- **90 day warranty & 5 day right of return on all equipment**
- **1-3 year warranties for new and premium-refurbished equipment**
- **Every unit tested to OEM specifications**
- **Satisfaction guaranteed**

You have plans, we will help you achieve them.
Any project. Any budget.

Get a quote today!

Call (732) 919-3339 or email sales@alltest.net.

Autoranging DC Power Supplies

E36150 Series

This manual contains service information, performance verification and adjustment procedures for the E36150 Series autoranging DC power supplies.

Notices	4
Copyright Notice	4
Manual Part Number	4
Edition	4
Published by	4
Warranty	4
Technology Licenses	4
U.S. Government Rights	5
Third Party Licenses	5
Waste Electrical and Electronic Equipment (WEEE)	5
Declarations of Conformity	5
Safety Information	6
1 Service and Maintenance	7
Specifications and Characteristics	8
General Information	8
Types of service available	8
Obtaining repair service (worldwide)	8
Repackaging for shipment	8
Cleaning and handling	8
Troubleshooting	9
Self-Test Procedures	9
User Replaceable Parts	9
Battery Replacement	10
Replacing the Battery (KPN 1420-0942)	10
Disassembly	11
Removing the front panel	11
Removing/Installing the knob (KPN 54964-47450)	12
Installing the strap handler	12
Removing/Installing the optional GPIB interface	12
2 Verification and Adjustments	13
Performance Verification	14
Recommended test equipment	14
Test considerations	15
Measurement techniques	15
Verification Test Setups	16
Constant Voltage (CV) verification	17
Constant Current (CC) verification	22
Test Record Forms	26
Test record form - Keysight E36154A	26
Test record form - Keysight E36155A	28
Calibration Adjustment Procedures	30
Closed-case electronic calibration	30
Calibration interval	30
Calibration adjustment process	30
Calibration security	30
Calibration count	31
Calibration message	31
Saving calibration data	32
Calibration auto save	32
Calibration Test Setup	32

Calibration procedure	33
Save the calibration data	35

Notices

Copyright Notice

© Keysight Technologies 2022, 2023

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies as governed by United States and international copyright laws.

Manual Part Number

E36151-90009

Edition

Edition 2, February 2023

Published by

Keysight Technologies
Bayan Lepas Free Industrial Zone
11900 Bayan Lepas, Penang
Malaysia

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR OF ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT SHALL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at <http://www.keysight.com/find/sweula>. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Third Party Licenses

Portions of this software are licensed by third parties including open source terms and conditions. To the extent such licenses require that Keysight make source code available, we will do so at no cost to you. For more information, please contact Keysight support at <https://www.keysight.com/find/assist>.

Waste Electrical and Electronic Equipment (WEEE)

The crossed out wheeled bin symbol indicates that separate collection for waste electric and electronic equipment (WEEE) is required, as obligated by the EU DIRECTIVE and other National legislation.

Please refer to keysight.com/go/takeback to understand your Trade in options with Keysight in addition to product takeback instructions.

Declarations of Conformity

Declarations of Conformity for this product and for other Keysight products may be downloaded from the Web. Go to <https://regulations.about.keysight.com/DoC/default.htm>. You can then search by product number to find the latest Declaration of Conformity.

Safety Information

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

1 Service and Maintenance

Specifications and Characteristics

General Information

Troubleshooting

Self-Test Procedures

User Replaceable Parts

Battery Replacement

Disassembly

This chapter provides the specifications and service information on cleaning, troubleshooting, repair, and replaceable parts of the E36150 Series. This chapter also explains how to assemble and disassemble the E36150 Series.

Specifications and Characteristics

NOTE

For the characteristics and specifications of the E36150 Series Autoranging DC Bench Power Supply, refer to the datasheet at <https://www.keysight.com/us/en/assets/3122-1798/data-sheets/E36150-Series.pdf>.

General Information

Types of service available

If your instrument fails during the warranty period, Keysight Technologies will repair or replace it under the terms of your warranty. After your warranty expires, Keysight offers repair services at competitive prices. You also have the option to purchase a service contract that extends the coverage after the standard warranty expires.

Obtaining repair service (worldwide)

To obtain service for your instrument, contact your nearest Keysight Technologies Service Center. They will arrange to have your unit repaired or replaced, and can provide warranty or repair-cost information where applicable. Ask the Keysight Technologies Service Center for shipping instructions, including what components to ship. Keysight recommends that you retain the original shipping carton for return shipments.

Repackaging for shipment

Ensure the following to ship the unit to Keysight for service or repair:

- Attach a tag to the unit identifying the owner and indicating the required service or repair. Include the model number and full serial number.
- Place the unit in its original container with appropriate packaging material.
- Secure the container with strong tape or metal bands.
- If the original shipping container is unavailable, use a container that will ensure at least 10 cm (4 in.) of compressible packaging material around the entire instrument. Use static-free packaging materials.
- Remove the GPIB interface module from the instrument if the instrument is equipped with the GPIB interface module and the module is not having a failure.

Keysight suggests that you always insure your shipments.

Cleaning and handling

Cleaning

To prevent electrical shock, disconnect the instrument from AC mains power and disconnect all test leads before cleaning. Clean the outside of the instrument using a soft, lint-free, cloth slightly dampened with water.

- Do not use detergent or solvents.
- Do not attempt to clean internally.

If required, contact a Keysight Technologies Sales and Service office to arrange for proper cleaning to ensure that safety features and performance are maintained.

Electrostatic Discharge (ESD) precautions

Almost all electrical components can be damaged by electrostatic discharge (ESD) during handling. Component damage can occur at electrostatic discharge voltages as low as 50 V.

The following guidelines will help prevent ESD damage during service operations:

- Disassemble instruments only in a static-free work area.
- Use a conductive work area to reduce static charges.
- Use a conductive wrist strap to reduce static charge accumulation.
- Minimize handling.
- Keep replacement parts in original static-free packaging.
- Remove all plastic, foam, vinyl, paper, and other static-generating materials from the immediate work area.

Troubleshooting

Before troubleshooting or repairing the instrument, make sure the failure is in the instrument rather than any external connections. Also make sure that the instrument was accurately calibrated within the last year (see **Calibration Adjustment Procedures > Calibration Interval** for details).

Perform the following verifications if the unit is inoperative:

- Verify that the ac power cord is connected to the electronic load.
- Verify that the front-panel power switch is depressed.
- Verify the power-line voltage setting.

Self-Test Procedures

Refer to *E36150 Series User's Guide* for details.

User Replaceable Parts

You can find the instrument support part list at Keysight's Test & Measurement Parts Catalog
<http://www.keysight.com/find/part>.

The

Battery Replacement

WARNING

SHOCK HAZARD
Only qualified, service-trained personnel who are aware of the hazards involved should remove instrument covers. Always disconnect the power cable and any external circuits before removing the instrument cover. Some circuits are active and have power for a short time even when the power switch is turned off.

The internal battery powers the real-time clock. The primary function of the clock is to provide a time stamp for the internal file system. If the battery fails, the clock and time stamp function will not be available. No other instrument functions are affected.

Under normal use at room temperature, the lithium battery has a life expectancy between seven and ten years. Note that battery life will be reduced if the instrument is stored for a prolonged period at temperatures above 40 degrees Celsius.

The battery type is Panasonic CR 2032.

Replacing the Battery (KPN 1420-0942)

1. Remove the front panel.
2. The battery is located at the front panel PC board.
3. Use a flat-bladed screwdriver and carefully pry up on the side of the battery.

4. Install the new battery. Make sure that the positive side (+) is facing up. Place the battery under the small spring clips closest to the ribbon cable connector, then push down on the opposite end of the battery to seat the battery (see red arrow below). The top of the small spring clips should be visible after the battery is seated (see red circle below).

5. Replace the top cover when finished.
6. Reset the date and time.

NOTE

Properly dispose of the old battery in accordance with local laws and regulations.

Disassembly

Tools required

Items	Torque value
T20 Torx driver	21 in.lbs
Pozi M4 bit	9.0 in.lbs

Removing the front panel

Steps	Instructions	Visual
1.	Remove the side trims (KPN 5190-9105) from the front panel.	
2.	Remove four Pozi screws (KPN 0515-1055) from the front panel using a Pozi M4 bit.	
3	Pull out the front panel	
4	To install back the front panel, perform the above steps in reverse order.	

Removing/Installing the knob (KPN 54964-47450)

Steps	Instructions	Visual
1.	Pull out the knob to remove the knob from the front panel.	
2.	To install back the knob, push the knob back in the shaft. NOTE: Make sure to follow the shaft orientation before pushing the knob.	

Installing the strap handler

Steps	Instructions	Visual
1.	Insert the stainless steel belt into the PVC strap. Note: This step uses the strap handle assembly (KPN E36311-61200).	
2.	Insert the stainless steel gaskets to both side of the stainless steel belt.	
3.	Cover both side with the plastic cap (KPN 5042-6815).	
4.	Secure both side of the strap handle with 2 (M5*10) screws (KPN 0515-1384)	

Removing/Installing the optional GPIB interface

Refer to the *E36150 Series User's Guide* for details.

2 Verification and Adjustments

Performance Verification

Test Record Forms

Calibration Adjustment Procedures

This chapter contains the performance verification procedures which verify that the E36150 Series is operating within its published specifications. This chapter also provides information on adjustments performed after a performance verification fails.

Performance Verification

Performance verification ensures that the instrument performs within the specifications stated in the data sheet (<https://www.keysight.com/us/en/assets/3122-1798/data-sheets/E36150-Series.pdf>)

Verification Test Setups

Constant Current Verification

Constant Voltage Verification

Transient Response Time

CV Ripple and Noise Verification

Recommended test equipment

The test equipments recommended for the performance verification and adjustment procedures are listed below. If the exact instrument is not available, use the accuracy requirements shown to select substitute calibration standards.

Type	Specification	Recommended model
Digital multimeter	Readout: 6 1/2 digits Basic DC Accuracy: 0.0035%	Keysight 34465A or equivalent
Current monitor	10 A (1 Ω), TC = 4 ppm/ $^{\circ}$ C 100 A (0.01 Ω), TC = 4 ppm/ $^{\circ}$ C	Guildline 9230A-10 Guildline 9230A-100
Electronic Load	60 V, 80 A minimum, with transient capability	Keysight N3300A / 2 x N3306A (60 V, 120 A)
Oscilloscope	Sensitivity: 1 mV Bandwidth Limit: 20 MHz Probe: 1:1 with RF tip	Keysight Infiniium/6054A or equivalent
RMS voltmeter	True RMS Bandwidth: 10 MHz Sensitivity: 100 μ V	Keysight 3458A or equivalent
Differential amplifier	Bandwidth: 20 MHz	LeCroy DA1855A or equivalent
Terminations	1 – 50 Ω BNC termination 2 – 50 Ω , \geq 1/8 W resistor	Not applicable
Variable voltage transformer or AC source	Adjustable to highest rated input voltage range. Power: 1500 VA	Keysight AC6803B or equivalent
Fixed Load (E36154A)	Wirewound resistor 1000 W and 2000 W, for PARD verification: 1. 0.5 Ω (x 4 units in parallel) yields 0.125 Ω for 10 V, 80 A PARD 2. 1.125 Ω for 30 V, 26.667 A PARD	MF Power Resistor DSR-1000WR6J-F-V1 DSR-2000W1R2J-F-V1
Fixed Load (E36155A)	Wirewound resistor 2000 W, for PARD verification: 1. 0.5 Ω for 20 V, 40 A PARD 2. 4.5 Ω for 60 V, 13.333 A PARD	MF Power Resistor DSR-2000WR6J-F-V1 DSR-2000W5RJ-F-V1

Test considerations

- Ensure that the calibration ambient temperature is stable and between 20 °C and 30 °C.
- Ensure ambient relative humidity is less than 80%.
- Allow a 1-hour warm-up period before verification or calibration.
- Keep cables as short as possible, consistent with the impedance requirements.
- Performance verification and calibration procedure must be performed through rear panel output.

CAUTION The tests should be performed by qualified personnel. During performance verification tests, hazardous voltages may be present at the outputs of the power supply.

Measurement techniques

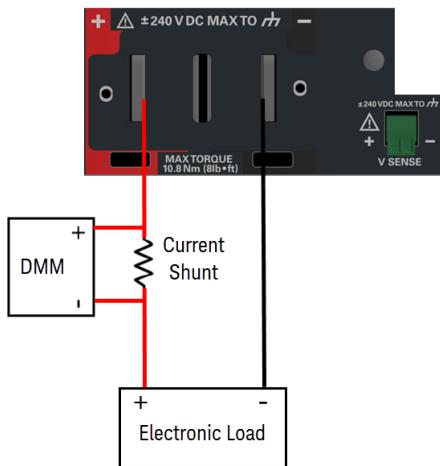
Voltmeter

To ensure that the values read by the voltmeter during both the verification procedure and the calibration procedure are not affected by the instantaneous measurement of the AC peaks of the output current ripple, make several DC measurements and average them.

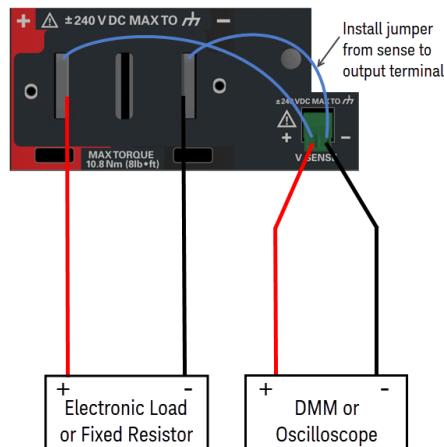
Current-monitoring resistor

The 4-terminal current shunt is used to eliminate output current measurement error caused by voltage drops in the load leads and connections. It has special current-monitoring terminals inside the load connection terminals. Connect the voltmeter directly to these current-monitoring terminals.

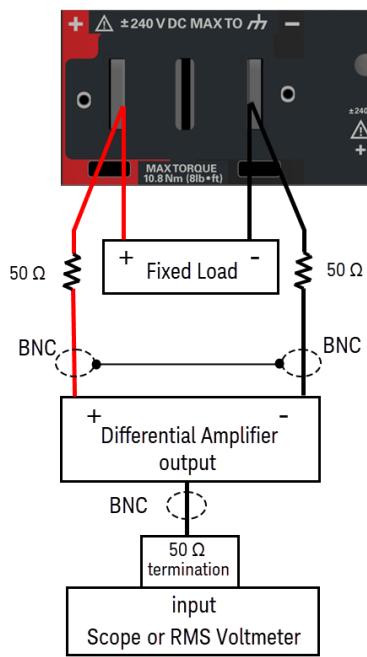
Electronic load


Many of the test procedures require the use of a variable load capable of dissipating the required power. If a variable resistor is used, switches should be used to connect, disconnect, or short the load resistor. For most tests, an electronic load can be used. The electronic load is considerably easier to use than load resistors, but it may not be fast enough to test transient recovery time and may be too noisy for the noise (PARD) tests.

Fixed load resistors may be used in place of a variable load, with minor changes to the test procedures. Also, if computer controlled test setups are used, the relatively slow (compared to computers and system voltmeters) settling times and slew rates of the power system may have to be taken into account. “Wait” statements can be used in the test program if the test system is faster than the power system.


Verification Test Setups

The following figures show the verification test set-ups. Connect all leads to the output terminal as shown below. A LAN, USB, or GPIB cable is needed for readback data.


CC Verification Test Setup

CV Verification Test Setup

CV Ripple and Noise Verification Test Setup

Constant Voltage (CV) verification

Voltage programming and readback accuracy

Test category = performance, calibration

This test verifies that the voltage programming and measurement functions are within specifications.

1. Turn off the power supply.
2. Connect a DMM across the sense terminals (see [CV Test Setup](#)). Do not connect the load.
3. Turn on the power supply and program the instrument settings as described in [Table 2-1](#).
4. Turn the output on. The output status should be "CV" and the output current should be close to zero.
5. Record the output voltage reading from the DMM and the voltage measured over the interface. The readings should be within the limits specified in the [Test Record Form](#) for the appropriate model under "Voltage Programming" and "Voltage Readback".

Table 2-1 Voltage programming and readback accuracy instrument settings

Model	DUT settings	
	Voltage (V)	Current (A)
E36154A	0	80
	30	80
E36155A	0	40
	60	40

CV load regulation

Test category = performance

This test measures the change in output voltage resulting from a change in output current from full load to no load.

1. Turn off the power supply.
2. Connect a DMM and electronic load to the output terminals (see [CV Test Setup](#)).
3. Turn on the power supply and program the instrument settings as described in [Table 2-2](#).
4. Turn the output on.
5. Operate the electronic load in constant current mode and set its current to the value as described in [Table 2-2](#). The output status of the power supply should be "CV". If it isn't, adjust the load so that the output current drops slightly.
6. Record the output voltage reading from the DMM as V_{load} .

7. Operate the electronic load in open mode (input off). Record the voltage reading from the DMM again as V_{noload} . The difference between the DMM readings in steps 6 and 7 is the CV load regulation ($V_{load} - V_{noload}$), which should not exceed the value listed in the **Test Record Form** for the appropriate model under “CV Load Regulation”.

Table 2-2 CV load regulation instrument settings

Model	DUT settings		Eload settings	
	Voltage (V)	Current (A)	Mode	Current (A)
E36154A	10	Max	CC	80
	30	Max	CC	26.67
E36155A	20	Max	CC	40
	60	Max	CC	13.33

CV line regulation

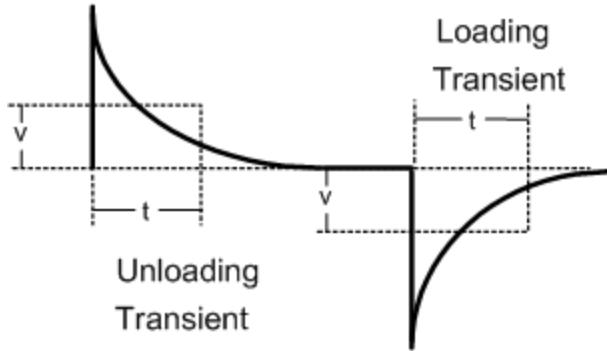
Test category = performance

This test measures the change in output voltage that results from a change in AC line voltage from the minimum to maximum value within the line voltage specifications.

1. Turn off the power supply.
2. Connect a DMM and electronic load to the output terminals (see **CV Test Setup**).
3. Connect a variable AC Source or Variac to the AC input, and set to an appropriate line voltage for the power supply configuration.
4. Turn on the power supply and program the instrument settings as described in **Table 2-3**.
5. Turn the output on.
6. Operate the electronic load in constant current mode and set its current to the value described in **Table 2-3**. The output status for the power supply should be “CV”. If it isn’t, adjust the load so that the output current drops slightly.
7. Adjust the AC power source to the low line voltage limit as described in **Table 2-3**. Record the output reading from the DMM as $V_{lowline}$.
8. Adjust the AC power source to the high line voltage limit as described in **Table 2-3**. Record the output reading from the DMM as $V_{highline}$.
9. The difference between the DMM readings in steps 7 and 8 is the CV line regulation ($V_{lowline} - V_{highline}$), which should not exceed the value listed in the **Test Record Form** for the appropriate model under “CV Line Regulation”.

Table 2-3 CV line regulation instrument settings

Model	DUT settings		AC source settings		Eload settings		Line voltage
	Voltage (V)	Current (A)	Low	High	Mode	Current (A)	
E36154A	30	Max	90 VAC	110 VAC	CC	26.67	100 VAC
	10	Max			CC	80	
	30	Max	103.5 VAC	126.5 VAC	CC	26.67	115 VAC
	10	Max			CC	80	
	30	Max	207 VAC	253 VAC	CC	26.67	230 VAC
	10	Max			CC	80	
E36155A	60	Max	90 VAC	110 VAC	CC	13.33	100 VAC
	20	Max			CC	40	
	60	Max	103.5 VAC	126.5 VAC	CC	13.33	115 VAC
	20	Max			CC	40	
	60	Max	207 VAC	253 VAC	CC	13.33	230 VAC
	20	Max			CC	40	


Transient response time

Test category = performance

This test measures the time for the output voltage to recover to within the specified value following a 50% change in the load current.

1. Turn off the power supply.
2. Connect a oscilloscope across the sense terminals (see [CV Test Setup](#)). Connect an electronic load to the output terminals.
3. Turn on the power supply and program the instrument settings as described in [Table 2-4](#).
4. Turn the output on.
5. Set the electronic load to operate in constant current mode. Program its load current as described in [Table 2-4](#).
6. Set the transient level to $\frac{1}{2}$ the maximum current. Set the transient duty cycle to 50% and transient frequency to 1 kHz. The output status of the power supply should be “CV”. If it isn’t, adjust the load so that the output current drops slightly.
7. Program the load’s transient current level to the higher current value indicated in [Table 2-4](#), and turn the transient generator on.

8. Adjust the oscilloscope for a waveform similar to that shown in the following figure.

9. The output voltage should return to within the specified voltage at the specified time following the 50% load change. Check both loading and unloading transient by triggering on the positive and negative slope. Record the time "t" of the transient at the voltage settling band "v" in the **Test Record Form** for the appropriate model under "Transient Response".

10. The transient response specification is met when the voltage recovers within 1 ms.

Table 2-4 Transient response time instrument settings

Model	DUT settings		Eload settings		Voltage settling band
	Voltage (V)	Current (A)	Current (A)	T-level	
E36154A	30	Max	26.67	13.333	75 mV
	10	Max	80	40	75 mV
E36155A	60	Max	13.33	6.667	150 mV
	20	Max	40	20	150 mV

CV ripple and noise verification

Test category = performance

Periodic and random output deviations superimpose a residual AC voltage on the DC output. This residual voltage is specified as the rms or peak-to-peak noise and is specified in the product data sheet.

1. Turn off the power supply.
2. Connect a fixed load, differential amplifier, and an oscilloscope (AC coupled) to the output terminals (see **CV Ripple and Noise Test Setup**).
3. Use an appropriate load resistor (see the fixed load value in the **Recommended Test Equipment** list) to keep the power system at instrument settings specified in **Table 2-5**.

4. As shown in the diagram, use two BNC cables to connect the differential amplifier to the + and – output terminals. Each cable should be terminated by a $50\ \Omega$ resistor. The shields of the two BNC cables should be connected together. Connect the output of the differential amplifier to the oscilloscope with a $50\ \Omega$ termination at the input of the oscilloscope.
5. Set the differential amplifier to multiply by ten, divide by one, and $1\ M\Omega$ input resistance. The positive and negative inputs of the differential amplifier should be set to AC coupling. Set the oscilloscope's time base to 5 ms/div, and the vertical scale to 100 mV/div. Turn the bandwidth limit on (usually 20 or 30 MHz), and set the sampling mode to peak detect.
6. Program the power supply to the settings indicated in **Table 2-5** for the appropriate model, and enable the output. Let the oscilloscope run for a few seconds to generate enough measurement points. On the Keysight Infiniium scope, the maximum peak-to-peak voltage measurement is indicated at the bottom of the screen on the right side. Divide this value by 10 to get the CV peak-to-peak noise measurement. The result should not exceed the peak-to-peak limits in the **Test Record Form** for the appropriate model under "CV Ripple and Noise, peak-to-peak".

NOTE

If the measurement contains any question marks, clear the measurement and try again. This means that some of the scope data received was questionable.

7. Disconnect the oscilloscope and connect an rms voltmeter in its place. Do not disconnect the $50\ \Omega$ termination. Divide the reading of the rms voltmeter by 10. The result should not exceed the rms limits in the **Test Record Form** for the appropriate model under "CV Ripple and Noise, rms".

Table 2-5 CV ripple and noise verification instrument settings

Model	DUT settings		Fixed load
	Voltage (V)	Current (A)	
E36154A	30	Max	1.125
	10	Max	0.125
E36155A	60	Max	4.5
	20	Max	0.5

Constant Current (CC) verification

Current programming and readback accuracy

Test category = performance, calibration

This test verifies that the current programming and measurement functions are within specifications.

1. Turn off the power supply.
2. Connect the current shunt directly across the output terminals. Connect the DMM directly across the current shunt (see [CC Test Setup](#)). Note that the electronic load is not used in this portion of test.
3. Turn on the power supply and program the instrument settings as described in [Table 2-6](#).
4. Turn the output on. The output status should be "CC" and the output voltage should be close to zero.
5. Divide the voltage drop (DMM reading) across the current shunt by the shunt resistance to convert to amps and record this value. Also, record the current measured over the interface.
6. The readings should be within the limits specified in the [Test Record Form](#) for the appropriate model under "Current Programming" and "Current Readback (High Range)".

Table 2-6 Current programming and readback accuracy instrument settings

Model	DUT settings	
	Voltage (V)	Current (A)
E36154A	Max	0
	Max	80
E36155A	Max	0
	Max	40

Low range current readback accuracy

Test category = performance, calibration

This test verifies that the current measurement functions are within specifications.

1. Turn off the power supply.
2. Connect the current shunt directly across the output terminals. Connect the DMM directly across the current shunt (see [CC Test Setup](#)). Note that the electronic load is not used in this portion of test.
3. Turn on the power supply and program the instrument settings as described in [Table 2-7](#).
4. Turn the output on. The output status should be “CC” and the output voltage should be close to zero.
5. Divide the voltage drop (DMM reading) across the current shunt by the shunt resistance to convert to amps and record this value. Also, record the current measured over the interface.
6. The readings should be within the limits specified in the [Test Record Form](#) for the appropriate model under “Current Readback (Low Range)”.

Table 2-7 Low range current readback accuracy instrument settings

Model	DUT settings	
	Voltage (V)	Current (A)
E36154A	Max	0
	Max	0.8
E36155A	Max	0
	Max	0.4

CC load regulation

Test category = performance

This test measures the change in output current resulting from a change in output voltage from full scale to short circuit.

1. Turn off the power supply.
2. Connect the current shunt, DMM, and electronic load to the output terminals (see [CC Test Setup](#)). Connect the DMM directly across the current shunt.
3. Turn on the power supply and program the instrument settings as described in [Table 2-8](#).
4. Turn the output on.
5. Operate the electronic load in constant voltage mode and set its voltage to the value as described in [Table 2-8](#). The output status of the power supply should be “CC”. If it isn’t, adjust the load so that the output voltage drops slightly.
6. Record the current reading (I_{load}), by dividing the voltage reading on the DMM by the resistance of the current monitoring resistor.

7. Operate the electronic load in short (input short) mode. Divide the voltage drop (DMM reading) across the current shunt by the shunt resistance to convert to amps and record this value (I_{short}).
8. The difference in the current readings in steps 6 and 7 is the load regulation current, which should not exceed the value listed in the **Test Record Form** for the appropriate model under “CC Load Regulation”.

Table 2-8 CC load regulation instrument settings

Model	DUT settings		Eload settings	
	Voltage (V)	Current (A)	Mode	Voltage (V)
E36154A	Max	80	CV	10
	Max	26.67	CV	30
E36155A	Max	40	CV	20
	Max	13.33	CV	60

CC line regulation

Test category = performance

This test measures the change in output current that results from a change in AC line voltage from the minimum to maximum value within the line voltage specifications.

1. Turn off the power supply.
2. Connect the current shunt, DMM, and electronic load to the output terminals (see **CC Test Setup**). Connect the DMM directly across the current shunt.
3. Connect the AC power cord of the power supply to the AC power source.
4. Turn on the power supply and program the instrument settings as described in **Table 2-9**.
5. Turn the output on.
6. Operate the electronic load in constant voltage mode and set its voltage to the value as described in **Table 2-9**. The output status of the power supply should be “CC”. If it isn’t, adjust the load so that the output voltage drops slightly.
7. Adjust the AC power source to the low line voltage limit as described in **Table 2-9**.
8. Divide the voltage drop (DMM reading) across the current shunt by the shunt resistance to convert to amps and record this value ($I_{lowline}$).
9. Adjust the AC power source to the high line voltage limit as described in **Table 2-9**.
10. Divide the voltage drop (DMM reading) across the current shunt by the shunt resistance to convert to amps and record this value ($I_{highline}$).
11. The difference between the DMM reading in steps 8 and 10 is the CC line regulation, which should not exceed the value listed in the **Test Record Form** for the appropriate model under “CC Line Regulation”.

Table 2-9 CC line regulation instrument settings

Model	DUT settings		AC source settings		Eload settings		Line voltage
	Voltage (V)	Current (A)	Low	High	Mode	Voltage (V)	
E36154A	Max	26.67	90 VAC	110 VAC	CV	30	100 VAC
	Max	80			CV	10	
	Max	26.67	103.5 VAC	126.5 VAC	CV	30	115 VAC
	Max	80			CV	10	
	Max	26.67	207 VAC	253 VAC	CV	30	230 VAC
	Max	80			CV	10	
E36155A	Max	13.33	90 VAC	110 VAC	CV	60	100 VAC
	Max	40			CV	20	
	Max	13.33	103.5 VAC	126.5 VAC	CV	60	115 VAC
	Max	40			CV	20	
	Max	13.33	207 VAC	253 VAC	CV	60	230 VAC
	Max	40			CV	20	

Test Record Forms

Test record form - Keysight E36154A

Test record form - Keysight E36155A

Test record form - Keysight E36154A

E36154A		Report Number _____	Date _____	
Description	DUT Setting	Lower limit	Result	Upper limit
Constant Voltage Tests				
Voltage Programming				
Zero voltage output (V_0)	0 V, 80 A	-0.006 V	_____	0.006 V
Maximum voltage output (V_{max})	30 V, 80 A	29.985	_____	30.015
Voltage Readback				
Zero voltage measured over interface	0 V, 80 A	$V_0 - 0.006$ V	_____	$V_0 + 0.006$ V
Maximum voltage measured over interface	30 V, 80 A	$V_{max} - 0.018$ V	_____	$V_{max} + 0.018$ V
CV Load Regulation ($V_{load} - V_{noload}$)				
30 V at 26.67 A	30 V, Max A	-5 mV	_____	5 mV
10 V at 80 A	10 V, Max A	-3 mV	_____	3 mV
CV Line Regulation ($V_{lowline} - V_{highline}$)				
30 V at 26.67 A	30 V, 80 A	-5 mV	_____	5 mV
10 V at 80 A	10 V, 80 A	-3 mV	_____	3 mV
CV Ripple and Noise				
peak-to-peak	30 V, Max A	-	_____	75 mV
	10 V, Max A	-	_____	75 mV
rms	30 V, Max A	-	_____	5 mV
	10 V, Max A	-	_____	5 mV
Transient Response (75 mV)				
30 V at 26.67 A	30 V, 80 A	-	_____	1 ms
10 V at 80 A	10 V, 80 A	-	_____	1 ms
Constant Current Tests				
Current Programming				
Zero current output (I_0)	Max V, 0 A	-0.02 A	_____	0.02 A
Maximum current output (I_{max})	Max V, 80 A	79.9 A	_____	80.1 A
Current Readback (High Range)				
Zero Current measured over interface	Max V, 0 A	$I_0 - 0.02$ A	_____	$I_0 + 0.02$ A
Maximum Current measured over interface	Max V, 80 A	$I_{max} - 0.1$ A	_____	$I_{max} + 0.1$ A

E36154A	Report Number _____	Date _____		
Description	DUT Setting	Lower limit	Result	Upper limit
Current Readback (Low Range)				
Zero current measured over interface	Max V, 0 A	$I_0 - 0.005 \text{ A}$	_____	$I_0 + 0.005 \text{ A}$
Maximum current measured over interface	Max V, 0.8 A	$I_{\max} - 0.0058 \text{ A}$	_____	$I_{\max} + 0.0058 \text{ A}$
CC Load Regulation ($ I_{\text{load}} - I_{\text{short}} $)				
26.67 A at 30 V	Max V, 26.67 A	-28.6 mA	_____	28.6 mA
80 A at 10 V	Max V, 80 A	-82 mA	_____	82 mA
CC Line Regulation ($ I_{\text{lowline}} - I_{\text{highline}} $)				
26.67 A at 30 V	Max V, 26.67 A	-28.6 mA	_____	28.6 mA
80 A at 10 V	Max V, 80 A	-82 mA	_____	82 mA

Test record form - Keysight E36155A

E36155A	Report Number _____	Date _____		
Description	DUT Setting	Lower limit	Result	Upper limit
Constant Voltage Tests				
Voltage Programming				
Zero voltage output (V_0)	0 V, 40 A	-0.01 V	_____	0.01 V
Maximum voltage output (V_{max})	60 V, 40 A	59.972 V	_____	60.028 V
Voltage Readback				
Zero voltage measured over interface	0 V, 40 A	$V_0 - 0.01$ V	_____	$V_0 + 0.01$ V
Maximum voltage measured over interface	60 V, 40 A	$V_{max} - 0.034$ V	_____	$V_{max} + 0.034$ V
CV Load Regulation ($V_{load} - V_{noload}$)				
60 V at 13.33 A	60 V, Max A	-8 mV	_____	8 mV
20 V at 40 A	20 V, Max A	-4 mV	_____	4 mV
CV Line Regulation ($V_{lowline} - V_{highline}$)				
60 V at 13.33 A	60 V, Max A	-8 mV	_____	8 mV
20 V at 40 A	20 V, Max A	-4 mV	_____	4 mV
CV Ripple and Noise				
peak-to-peak	60 V, Max A	-	_____	75 mV
	20 V, Max A	-	_____	75 mV
rms	60 V, Max A	-	_____	5 mV
	20 V, Max A	-	_____	5 mV
Transient Response (150 mV)				
60 V at 13.33 A	60 V, Max A	-	_____	1 ms
20 V at 40 A	20 V, Max A	-	_____	1 ms
Constant Current Tests				
Current Programming				
Zero current output (I_0)	Max V, 0 A	-0.01 A	_____	0.01 A
Maximum current output (I_{max})	Max V, 40 A	39.95 A	_____	40.05 A
Current Readback (High Range)				
Zero current measured over interface	Max V, 0 A	$I_0 - 0.01$ A	_____	$I_0 + 0.01$ A
Maximum current measured over interface	Max V, 40 A	$I_{max} - 0.05$ A	_____	$I_{max} + 0.05$ A
Current Readback (Low Range)				
Zero current measured over interface	Max V, 0 A	$I_0 - 0.004$ A	_____	$I_0 + 0.004$ A
Maximum current measured over interface	Max V, 0.4 A	$I_{max} - 0.0044$ A	_____	$I_{max} + 0.0044$ A

E36155A	Report Number _____	Date _____		
Description	DUT Setting	Lower limit	Result	Upper limit
CC Load Regulation ($ I_{load} - I_{short} $)				
13.33 A at 60 V	Max V, 13.33 A	-15.33 mA	_____	15.33 mA
40 A at 20 V	Max V, 40 A	-42 mA	_____	42 mA
CC Line Regulation ($ I_{lowline} - I_{highline} $)				
13.33 A at 60 V	Max V, 13.33 A	-15.33 mA	_____	15.33 mA
40 A at 20 V	Max V, 40 A	-42 mA	_____	42 mA

Calibration Adjustment Procedures

This chapter includes calibration adjustment procedures for Keysight E36150 Series Autoranging DC Power Supply.

NOTE

Perform the verification tests before calibrating your instrument. If the instrument passes the verification tests, the unit is operating within its calibration limits and does not need to be re-calibrated.

Closed-case electronic calibration

The instrument uses closed-case electronic calibration; no internal mechanical adjustments are required. The instrument calculates correction factors based on reference signals that you apply and stores the correction factors in non-volatile memory. This data is not changed by cycling power, *RST, or SYSTem:PRESet.

Calibration interval

The recommended calibration interval for Keysight E36150 series power supply is one year.

Calibration adjustment process

The following general procedure is recommended to complete a full calibration adjustment.

1. Adhere to the test considerations. See [Performance Verification > Test considerations](#) for details.
2. Perform the performance verification tests to characterize the instrument. See [Performance Verification](#) for details.
3. Unsecure the instrument for calibration. See [Calibration security](#) for details.
4. Perform the calibration procedures. See [Calibration procedure](#) for details.
5. Secure the instrument against the calibration. See [Calibration security](#) for details.
6. Take note of the security code and calibration count in the instrument's maintenance records.
7. Perform the performance verification tests to verify the calibration.

Calibration security

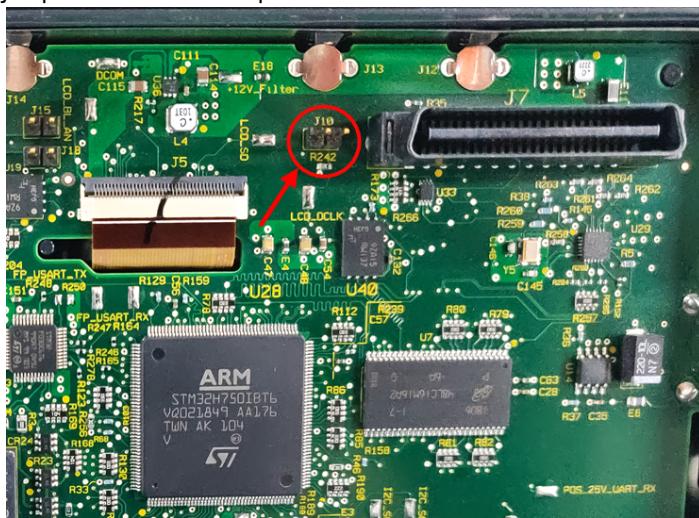
The instrument has a calibration passcode to prevent accidental or unauthorized calibration. When you receive your power supply, it is secured by a default passcode. The default passcode is 0. The security code cannot be changed by a power cycle or *RST.

You can enter a passcode of up to 9 digits.

You can change the passcode from both front panel and remote interface.

From the front panel:

1. Press Utilities > Test / Setup > Calibration > Change Passcode
2. Enter your desired passcode and press Done.


From the remote interface:

To change a new passcode to 12345:

CAL:SEC:CODE 12345

NOTE

To change a forgotten passcode to a new passcode, you can turn on the instrument after shorting CAL SECURE jumper J10 on the front panel board as shown below and send CAL:SEC:CODE <code> to change the passcode.

Calibration count

The instrument counts the number of times it has saved calibration data. Your instrument was calibrated at the factory; when you receive your instrument, read and record the initial count. You can only read the calibration count by sending the CAL:COUNt? query, and the calibration count is not change by a power cycle or *RST.

If Auto Save is enabled, the count increments when you exit the calibration state. To avoid double counting, do not manually save the count with Auto Save enabled.

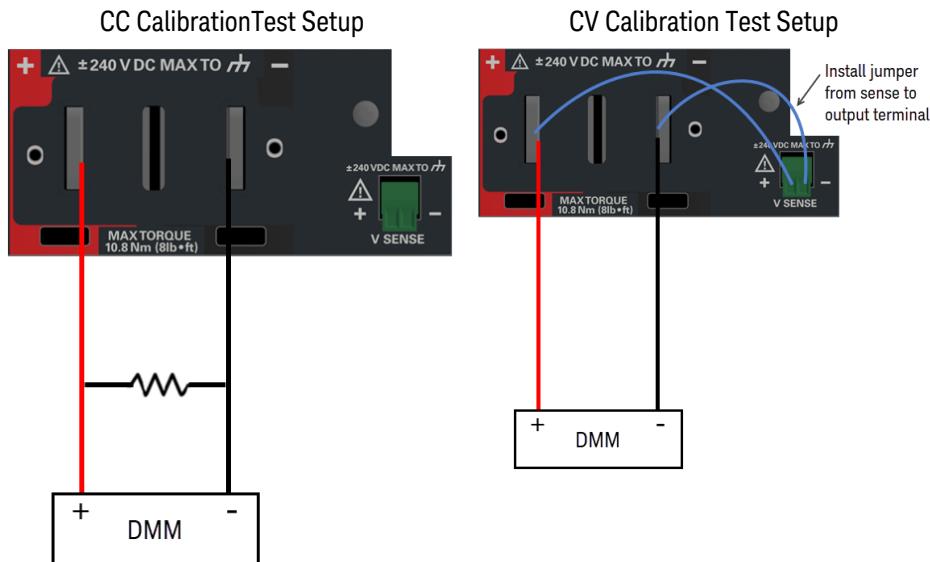
Calibration message

You can use the CALibration:STRing command to store a message of up to 40 characters in calibration memory. For example, you could store the last calibration date, the calibration due date, or contact information for the person responsible for calibration. The calibration message is not affected by a power cycle or *RST.

You can only store the calibration message when the instrument is unsecured, but you can execute the CALibration:STRing? query regardless of whether the instrument is secured. A new calibration message overwrites the previous message, and messages over 40 characters are truncated.

Saving calibration data

You must always save new calibration data before cycling instrument power or leaving the calibration state with the Auto Save feature off. To save calibration data, send CAL:SAVE or save the calibration data from the front panel.


Calibration auto save

The instrument includes a calibration Auto Save feature. This feature automatically saves the calibration data to non-volatile memory and increments the calibration count when you exit the calibration state.

To enable or disable the CAL auto Save feature, send CAL:ASAV ON or CAL:ASAV OFF. To query the CAL auto Save state, send CAL:ASAV?

Calibration Test Setup

The following figures show the verification test set-ups. Connect all leads to the output terminal as shown below.

Calibration procedure

Enter the calibration state

To begin the calibration procedure, you must enter the calibration state.

Step	Front Panel	SCPI
1	Press Utilities > Test / Setup > Calibration . Enter the default passcode (default passcode is 0). Press Login to enter the calibration page.	CAL:SEC:STAT 0, <code>
2	To change a forgotten passcode to a new passcode, you can turn on the instrument after shorting CAL SECURE jumper J10 on the front panel board and send scpi command to change the passcode.	CAL:SEC:CODE <code>

Calibrate voltage

Let the unit sit with output ON for one minute, then connect the DMM voltage input to the power supply (See [CV Cal Setup](#)).

1. Press **Perform Calibration** > **Cal Volt**.
2. Measure the output voltage (low point) with the DMM.
Note: Wait 2 minutes for the voltage to stabilize before measuring the voltage with DMM.
3. Enter the measured value, and press **Next**.
4. Measure the output voltage (high point) with the DMM.
Note: Wait 2 minutes for the voltage to stabilize before measuring the voltage with DMM.
5. Enter the measured value, and press **Next**.
6. Read DONE or FAIL on the display.
7. Press **Cal Save**.

Calibrate current

Allow the unit to sit with output turned ON for one minute, then connect a current monitoring resistor across the output terminals to be calibrated and then connect a DMM across the terminals of the monitoring resistor (See [Cal CC Setup](#)).

1. Press **Perform Calibration** > **Cal Curr**.
2. Measure the output current (low point) with the DMM.
Note: Wait 7 minutes for the current to stabilize before measuring the current with DMM.
3. Enter the measured value, and press **Next**.
4. Measure the output current (mid point) with the DMM.
Note: Wait 7 minutes for the current to stabilize before measuring the current with DMM.
5. Enter the measured value, and press **Next**.
6. Measure the output current (high point) with the DMM.
Note: Wait 7 minutes for the current to stabilize before measuring the current with DMM.
7. Enter the measured value, and press **Next**.
8. Read **DONE** or **FAIL** on the display.
9. Press **Cal Save**.

Calibrate low range current

Allow the unit to sit with output ON for one minute before continuing.

1. Press **Perform Calibration** > **Cal Low Curr**.
2. Measure the output low range current (low point) with the DMM.
Note: Wait 3 minutes for the current to stabilize before measuring the current with DMM.
3. Enter the measured value, and press **Next**.
4. Wait approximately 10 seconds.
5. Measure the output low range current (high point) with the DMM.
Note: Wait 3 minutes for the current to stabilize before measuring the current with DMM.
6. Enter the measured value, and press **Next**.
7. Read **DONE** or **FAIL** on the display.
8. Press **Cal Save**.

Save the calibration data

To save calibration data, press **Cal Save** or enable the 'Auto Save' feature. With Auto Save, calibration data will be saved when the user exits the calibration menu.

After completing the voltage, current and low range current calibrations, save the calibration data before exiting the calibration state, or simply exit the calibration state if Auto Save is on.

- To save the Cal data: `CAL:SAVE`
- To enable the Cal Auto Save: `CAL:ASAVE ON`
- To exit Cal State: `CAL:SEC:STAT 1 <code>`

This information is subject to change
without notice.

© Keysight Technologies 2022, 2023
Edition 2, February 2023
Printed in Malaysia

E36151-90009

www.keysight.com